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Abstract

The problems of the preliminary and first level
detail design of supersonic aircraft wings are
stated as mathematical programs and solved using
automated optimum design techniques. The problem
is approached In two phases: the first is a
simplified equivalent plate model in which the
envelope, plan form and structural parameters
are varied to produce a design, the second Is a
finite element model with fixed configuration In
which the material distribution is varied. Con-
straints include flutter, aeroelastically computed
stresses and deflections, natural frequency and a
variety of geometric limitations. The Phase I ob-
jective is a combination of weight and drag while
Phase II Is a weight minimization.

1. Introduction

This paper reports upon work which was under-
taken to show the feasibility of automated design
optimization of aircraft structures having practi-
cal scale and complexity and subject to Involved
dynamic behavior constraints. It should be viewed
as a contribution to a long range effort to assemble
an Integrated capability for the computer aided
design for aircraft. There are a number of large
scale structural analysis programs In existence,
but synthesis of a complicated system like an air-
craft cannot be achieved practically at the present
time by simply connecting such analysis programs
together. Probably the best design system will
be very flexible and versatile and hence will of
necessity include human designers as an Impor-
tant element. We feel that such a system will be
organized around a core of optimization methodology.
Two hlerarchlal levels may be considered for this
system: one Is based on the substructuring of
the physical airframe and its systems and the other
is based on the level of idealization of each sub-
structure and system and Its interfaces with ad-
jacent substructures or the environment.

The study reported herein has a position at a
preliminary design stage and concerns the design
of supersonic aircraft wings. It takes into account
requirements on natural frequencies and flutter
speed In addition to those on static behavior re-
sponses and geometric side constraints. It
Includes some examination of the consequences of
changing the aerodynamic envelope as well as
merely the structural contents of the wing. The

motivation for including dynamic constraints
in the preliminary design of aircraft wing
structures is in the,reported experiences of
other Investigators , in which significant mod-
ification of structures which were designed to
satisfy static behavior constraints were required
to meet requirements on dynamic behavior.

Structural optimization including dynamic con-
straints has been considered by many investigators.
For multl-degree-of freedom structures, significant
progress has been reported in recent years using
the discrete methods of analysis, taking advantage,
of course, of the capability of high speed digital
computers. Among these, structural design for
minimum weight subject to constraints.on natural
frequencies.were renorted by Turner '...
Zarghamee1 ;, Rubin^ ', Fox and Kapoor , et al.
In utilizing discrete methods, there is no theoreti-
cal difference between static and dynamic behavior
constraints. However, practical and numerical
difficulties do exist because dynamic analyses
are usually time consuming and sensitivities of
the behavior with respect to the change of design
variables are difficult to obtain. The
derivatives of natural frequencies with respect
to design variables were presented in Refs. (3)
and (5) and have been utilized In actual design
procedures recently (3), (4), and (5). For the
problem of structural optimization subject to
flutter constraints, very little work has been
done. Early .work has been presented by Schmit
and Thornton . In their paper, a rectangular
supersonic wing of symmetric double wedge profile
was designed, subject to constraints on root
angle of attack, tip deflection, stress at
the root and flutter speed. ..Turner, In Ref. (7),
extended his previous work to the problem of
attaining the minimum structural mass holding
flutter speed constant. Simply supported panel
(supersonic) and cantilever rectangular wing
(subsonic) are considered as,,examples in this work.
Very recently, Stroud et al published work which
is closely related to the work of this report.
Their purpose is to obtain the optimal skin panel
thickness distribution for minimum weight which
satisfies both yield stress and flutter speed
criteria for variable depth, clipped tip delta
wing structures. Their structural model may be
called a finite difference model, In which the
spanwise displacement Is considered at N stations,
parallel to the air stream and the chordwise
displacement Is approximated by a quadratic poly-
nomial at each spanwise station.
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It is natural to desire to extend this trend
and to establish some useful design procedures
for practical wing structures. However, It Is
not realistic to take all requirements Into
account and analyze the structures In detail,
even with the most advanced current computers.
Consequently, In the study reported herein,
the scope of the work Is limited to the determin-
ation of the basic structural configuration and
material distribution at the preliminary design
stage of a new supersonic airplane.

The process Involved In this study consists
of two phases. The' first Is concerned with
the determination of a simplified configuration
of the wing structure and the aerodynamic envelope.
In particular the simplified plan view shape of a
low aspect ratio wing, the symmetric wing depth
distribution and the cover panel thickness
distribution are to be determined. The design
process Is constituted so that an objective
function composed of the aerodynamic drag
and the weight of the wing Is minimized,
subject to constraints on static and dynamic
behavior for multiple flight and fuel conditions.
The second phase Is the determination of
relatively detailed material distribution
for a wing of fixed configuration. Here the
wing Is modeled with finite elements and the
thicknesses of the cover plate elements, cross
sectional areas of bar elements representing

flanges, thickness of the webs of ribs and spars,
and the magnitude of "tuning" masses are determined
for minimum weight, subject to static and dynamic
constraints for multiple flight conditions.

These two phases are independent and most of the
analysis techniques are different. It Is possible,
however, tc accomplish an extensive preliminary
design of a wing structure by using the results
of these two studies sequentially. Namely, first
determine the basic configuration and a very crude
material distribution by using the routine
developed in Phase I. Then using the optimal
configuration, detailed material distribution
is obtained by the Phase II routine.

A wing Is Idealized as shown In Fig. 1, In
which the plan view shape Is a trapezold defined
completely by four parameters: R, S, Q\, and 62-

FREE STREAM

Figure 1'

The wing depth distribution, d(x, y), and the
cover panel thickness distribution, t(x, y),
are expressed In the form of polynomials. These
polynomials must be chosen so that a realistic and
general distribution can be expressed with a min-
imum number of constants (design variables) and
also d(x, y) must satisfy the condition of
zero thickness at the leading and the trailing
edges.

Our choices are:

ion

d(x, y) - - tan0! — n) (-

2. Analytical Idealizations

2.1 Phase I

2.1.1 Structural Model

As an approximation, the wing of a supersonic
aircraft may be regarded as a camberless, smooth,
thin sandwich plate of variable thickness, and
hence it Is possible to consider this type of
structure equlvalently as a plate which has vari-
able flexural rigidities and shear stiffness.
This is called an "equivalent plate" model. A
low aspect ratio wing may be composed of plate
spars and ribs, and stiffened upper and .lower
cover panels. In Phase I, however, detailed
structural arrangement and dimensions are not
considered, and, therefore, such inhoraogenietles
of the core or the cover panels are smeared;
i.e. the core Is considered to be of a homogeneous,
orthotropic material whose equivalent tensile and
shear moduli are computed by smearing the material
by the ratio of cross sectional areas, and the
cover plates are also considered to be orthotropic
plates of smooth thickness variation.

(I)

t(x, y) - n) (-£ + tan02 '•- r,
x x

t3n) + t0

where

r
X

L , L : reference lengths
x y

dj, d2, d3 : wing depth design variables



cover plate thickness design
variables

mlnimOm gauge thickness of
cover plates

H7(n) - 495n6 - 1320n
5

+ 70n2
- 504n

3

H8(n) - 2002n7 - 6435n6 + 7920n5 - 4620n"
+ 1260T13 - 126n2

For most airplane wings, certain portions near
the leading and the trailing edges do not function
as structural elements to carry bending and
shear loadings: they may be control surfaces,
lift augmentation devices or simply an extension
of thin cover plates. To account for this effect,
prespecified portions of the chord length from
the leading and the trailing edges are excluded
in computing stiffness characteristics of the
wing structures.

A Ritz type displacement method is used to
formulate the stiffness characteristics Including
transverse shear deformation. Basic assumptions
employed in this process are:

(1) t « d
(2) In-plane displacement of the neutral sur-

face is negligible.
(3) Young's modulus of the core in the trans-

verse direction is infinitely large.
(4) The Love-Kirchoff hypothesis is valid

throughout the core.

It was observed that the numerical accuracy of
the computed behavior responses depends strongly
on the choice of the assumed displacement functions.
Sets of polynomials were determined so that each
function is as strongly independent as possible
from the others In the set. Ideally, these
functions would be orthogonal but since this is
a very difficult condition to meet in the odd
shaped domain of the wing, a set which is "nearly"
orthogonal in the wing domain was used. These
consist of the following:

(1) Chordwise direction (Legendre Polynomials),
defined in 0 s 5 s 1

Pi (5) = 1 :

P2(5) = 2 5 - 1

P3(5) = 652 -65 + 1

Pu(5) = 205 3 - 305 2 + 125-1 *2^

P5 (5) = 705
1* - 14053 + 9052 -205+1

P6(5) = 25255 - 63051* + 56053 - 2105?.

+ 30f, - 1

(2) Spanwise direction (see Ref. (9)), defined
in 0 i n i 1

Hj(n) = 1

H2(n) - n

H3(r,) - n
2

Mn) " 6n3 -

H5(n) = 28T11* -

(3)

Using this set of polynomials, the transverse
displacement w(x, y), and the rotational angles of
the midsurface In the x and y directions, a(x, y)
and f}(x, y), respectively, are expressed as
follows:

w(x, y)
NX NY

NW

I Wk»k
(e> n)

NX-1 NY

(4)

o.(x, y) -

NA

k-1 k

NX NY-L
B(x, y) - I I b. P.(5)H (n)

1=1 j=l " ]

NB

(5)

(6)

where

NX, NY : numbers of displacement expansion
functions used in the chordwlse and
the spanwlse directions, respectively.

W. , A. , B. : displacement degrees of freedom.

NW

NA

NB

NX x (NY - 2)

(NX - 1) x NY

NX x (NY - 1)

- 252n"

Note that this chosen displacement pattern
satisfies the following boundary conditions at the
wing root.

w(x, 0) = 0

(x, 0)-0

Assemblage of the stiffness matrix is a straight
forward procedure (see Ref. (9)), however, computa-
tionally, It takes a significant amount of time to
build each new stiffness matrix.

2.1.2 Inertia Model

The structural mass densities of the core and
the cover plate materials are considered to be
uniform, i.e. inhomogenletles are smeared as was
done for stiffness characteristics. It is found



In practice that considerable mass gets added In
the form of stlffners, rivets, fillets, etc. to
the "pure" structural parts In the actual struc-
ture. To account for this, the densities of the
structural materials are taken as twice the actual
material densities. Fuel stored In the wing
Is also considered to be distributed uniformly In
the core and the total amount of fuel In the wing

'can be designated arbitrarily. Large concentrated '
masses such as engines are Included as point
masses at specified locations In the neutral plane
of the wing.

Kinetic energy due to rotational motion is
assumed to be negligibly small compared with t
due to the transverse motion. The well known
procedures for assembling the so called "consistent
mass matrix" are used.

QSA " I f Fl(5« n. Mo>

_T
A! - ayM^ JJ «((;, n) ~ (5, n)dxdy

JJ !£•(*, n)
_T

(E. n)
3x dxdy

|f n)dxdy '

2.1.3 Aerodynamic Model

(12)

JJ |l5 n)dxdy

Second order piston theory v"', In which
the wing depth distribution is taken Into account,
is used to predict both the steady and unsteady
pressure distributions on the wing surfaces. This
theory is reasonably accurate for an air stream
with Mach numbers greater than 2. For a wing of
finite length, It is known that the pressure
distribution on the surfaces which are inside the
Mach comes induced at the tip or at the root is
somewhat different from the one predicted by
piston theory. No modification is made to account
for this In the present study because of the
need for simplicity of the analysis in this
preliminary design optimization. For more
rigorous analyses, the Mach box method, as was
used by Giles .'or supersonic wing structural
design, aay be an adequate choice for steady
aerodynamics.

Applying piston theory, the local pressure
acting on the midsurface is expressed

AI and A2 are unsymmetric "aerodynamic stiffness"
matrices and Bj and B2 are symmetric aerodynamic
"damping" matrices.

2.2 Phase II

2.2.1 Structural Model

The finite element method is used in the Phase II
capability to represent the structural character-
istics of the wing. It consists of representing
a structural system as.an assembly of elements
as shown in Fig. 2. The nature of the multiweb

u
AP(x, y) = FI({;, n, M )(a0 - £)™

(7)

where

-̂-ff)
z : half of the wing depth at (x, y)

UQ: root angle of attack

Using Eq. (7), the work-equivalent load vector Q ,
A

associated with the transverse displacement vector,
W, is expressed :

(8)

RIB
ELEMENTS

SPAR
ELEMENTS

COVER PLATE
ELEMENTS

FLANGE AREAS

where

Figure 2



wing structure requires two distinct types of
elements; one mainly to.represent the wing
cover panels which carry direct stress, and
the other to represent the internal members
which are effective in shear. If the direct
stress carrying capability of the stringers
are to be represented separately, a third
kind of element is necessary to represent the
stringers.

Previous studies by ..Gallagher, Rattinger and
Archer U , Tinawl U , and Flemming ( ' indicat-
ed that the static behavior of a wing structure
is predominantly influenced by the choice of
internal element (web) idealization, and not
particularly by the Idealization used for the
skin panels. A comparative study of displacement
and eigenvalue results was made to find the
rates of convergence and the accuracies obtainable
from different finite element idealizations
(see Ref. (10)).

An idealization consisting of a combination
of triangular membrane elements (cover panels),
rectangular shear panels (webs) and pin-jointed
bars (stringers or flanges) were found to be simple
and accurate for representing the behavior of
multiweb wing structures.

The procedure for assembling a stiffness
matrix from such elements is well known and need
not be discussed here.

Minimize f()

Subject to g <5t) < 0, j • 1, 2, .... NC

where
(9)

X is the vector of design variables,

f(X) Is a scalar function of X: the objective
function,

g.(X) is a scalar function of X: a constraint
function.

If this problem Is to be solved automatically on a
computer, repeated analyses of the responses
of the system will be required corresponding to
the sequential modifications of the design
variables. Therefore, a next level of Idealization
or approximation is often useful.in order to
expedite the analyses of various behavior
responses and their sensitivity to the change of
design variables. Furthermore, efficiency
of the design procedure is of critical importance
In problems of this scale and complexity and
only by taking advantage of the special structure
and characteristics of the particular problems,
can design be completed within acceptable computa-
tion time, """he choice of algorithm and its
modification to account for special features
of given problems have a great deal of effect
on the efficiency of the design process.

3.1 Phase I

2.2.2 Inertia Model

The consistent mass matrix was utilized for
all structural elements, taking the densities
of the structural materials as twice that of
the real materials for the reasons discussed
earlier. All nonstructural masses, such .as
fuel, engines and tuning masses, are considered
to be concentrated at the nodes and therefore
only influence the diagonal elements of the mass
matrix.

The tuning masses are included for the purpose
of suppressing flutter and have no load carrying
capability as structural members.

2.2.3 Aerodynamic Model

The aerodynamic matrices are obtained by
carrying out the surface integrals for all the
cover plate elements using the expression for
the pressure difference given by Eq. (7). The
element air force matrices are obtained with
respect to the local coordinate system and trans-
formed into the global coordinate system.

3.1.1 Analyses of Behavior Responses

A complete equation of motion for the model ''
described in the previous section can be written
in a matrix form,

V

MW

KAA KAB

where

w, X,

o

(Bj+B2)W

KAW

K B W 1 = 0 (10)

(A, +A2+KWW)

vectors of displacement degrees of
freedom

X

1

3. Behavior Analysis and Design M: consistent mass matrix

In this section, the word "design" is taken to
mean the determination of a set of values for
the design variables so that a certain criterion
value is optimized (minimized or maximized), while
satisfying all constraints imposed on the behavior
responses and dimensions of the structural
system under consideration. This problem is
formulated as a mathematical programming problem
In the general form:

K ' etc: partitioned elements of the stiffness
matrix

<!,: static inertia load vector

<$„.: static aerodynamic load vector

g,: structural damping coefficient



Equation (10) can be reduced to a smaller
system by eliminating A and B, If their values
are not required explicitly.

+ B2 ]tj -f [ (1 + IgjKp + A! + A2]t5MW +
(11)

where

" [KWA

KAA KAB
-i

Throughout this study, the combination of NX = 3
and NY = 5 Is used (where it will be recalled that
NX and NY are the maximum numbers of displacement
expansion functions in the chordwige and spanwlse
directions respectively). Thus the size of the
system of Eq. (10) is 31 while that of Eq. (11) Is
only 9.

The governing equations for static equilibrium,
natural vibration and flutter can be derived from
Eq. (11) as follows:

Static Equilibrium: W = W = 0 , g , = 0

[KR + AI + A2'WS -W + *SA

Natural Vibration in Vacuum: BI = B2 = Aj

= A2 » 0

Assume: $ = W = W eiutv v

(12)

(13)

Flutter: Assume W = W + Wfe
iu)ft

+ (1 -t- + A

B 2)]W f

The static displacement state can be computed by
solving Eq. (12) for W . Modification of the
reduced stiffness matrix 1C, by the aerodynamic
stiffness matrices AI and A2 eliminates the
necessity of iteration on the displacement state
and the pressure distribution on the wing surface.
Determination of the root angle of attack to provide
specified lift requires an iteration process,
for which convergence Is assured provided the
wing is statically stable. The stress state in
the cover panels must be computed using the dis-
placement state obtained by solving the original
Eq. (10) because computation of the stress state
_^nvolves the rotational displacement vectors A and
B as well as the transverse displacement vector
W.

The natural vibration frequencies are computed
by solving a standard eigenvalue problem, Eq. (13),
by Householder's method. To check the accuracy
of the computed frequencies and mode shapes,
flat plates of various plan view shape were
analyzed and compared with.experimental results
given in the literature . It was found that
at least the three lowest natural frequencies
were computed with reasonable accuracy.

The flutter condition is found as one of the

solutions of a nonlinear, complex algebraic
equation, Eq. (15), with respect to two unknowns,

(15)

Among the NW solutions, the one which has the
lowest Mach number gives the flutter condition.
This Is obtained In the Phase I capability by
directly minimizing the absolute value of the
flutter determinant in to - M space by means of
the conjugate gradient method . Appropriate
choice of an Initial point for this minimization
will assure convergence to a correct solution.
Accuracy of this flutter analysis was studied by
also comparing computed flutter conditions for
flat plates of various plan view shapes and for
a simply supported, Infinitely long panel with
theoretical and computed results given in the
literature. It was found that the flutter Mach
number Is more sensitive than frequency to changes
in the design variables, but satisfactory coinci-
dence was observed as given in Ref. (9). It
was also experienced that flutter conditions are
associated with at least one bending mode and
one twisting mode simultaneously, and that
special care must be taken when the first twisting
natural vibration mode shifts between the second
and the third mode due to the changes of the
design variables.

The aerodynamic drag acting on the wing may
be separated into two parts. One corresponds to
the resultant force component of air pressure
acting on the wfag surface in the direction of the
free stream, and the other Is due to the viscous
friction between air and the solid wing surface.
The former, pressure drag, can be computed by
integrating the drag component of the local
pressure over the entire wing surface.

(16)

where

total pressure drag

d :

The latter, friction drag, is computed by integrat-
ing the drag component of the friction stress over
the entire wing surfact. The local friction stress
distribution is obtained following the procedure
given in Ref. (6), assuming that entire surface is
covered by turbulent boundary layer.

0.259 P^M2 l

(1 + 0.13 M2) I

1.23xl07

T2(l * 0.13M2)5/2

(17)

x xP M [T (1 + 0.13M2) + 198.7] \ -2-58«*



The total friction drag D is,

T
Ff

i dx)]dxdy
(18)

3.1.2 Formulation of the Design Problem for

Phase -I"'

Using the capability for analyzing the various
behavior responses described previously, the
design problem can be placed in the form given In
Eq. (9).

The objective function for Phase I is chosen
as a function of the structural weight of the
wing and the aerodynamic drag, with the form
of the function being arbitrary. The behavior
constraints must be considered for every combina-
tion of the flight and fuel conditions. Two
parametric* constraints, namely the stress and
the displacement constraints, are simplified by
choosing appropriate points where the most
critical responses are expected.

Behavior Constraints

Stress: At five equally spaced points along the
root, the Von Mises combined stress In the skin
panel is computed, and it must not exceed the
allowable level at any of the five points.

Displacement: Displacement of the leading and
the trailing edges at the tip of the wing are
computed, and neither of them may exceed the
specified value.

Root Angle of Attack: The root angle of attack
must be smaller than the specified value.

Cross Lift: The gross lift provided by the wing
must be equal to the predesigned value. This
equality constraint Is Incorporated in the
computation of the root angle rf attack and not
treated as a separate constraint in the
mathematical programming problem.

Natural Frequency: The fundamental frequency of
natural vibration in a vacuum must be higher
than the specified value. This constraint
is Independent of flight conditions.

Flutter Speed: The flutter Mach number must be
higher than the flight Mach number multiplied
by a safety factor.

Several geometrical side constraints are
required to Impose various restrictions of
engineering significance.

Side Constraints

Plan View Shape: Upper limits are imposed on the
root chord, lower limit on the semi-span,
positive leading edge sweep angle and upper
and lower limit of the trailing edge sweep

angle.

Wing Area: A minimum wing area is imposed.

Positive Tip Chord: A constraint to avoid negative
tip chord is imposed.

Wing Depth: Constraints to avoid negative wing
depth are imposed.

Minimum Gauge Thickness on Skin Panel Thickness:
Constraints to assure the minimum gauge thick-
ness of the skin panel are imposed.

3.1.3 Optimization Algorithm for Phase I

The critical factor in choosing an appropriate
algorithm is, of course, the computation time
required to complete a design. Most of the
efficient methods of optimization utilize deriva-
tives (with respect to the design variables) of
the constraint and objective functions. In this
work, the complexity of the analyses is so great
that the gradient of the behavior constraints and
of the objective function can only be computed
by a finite difference method. This requires
a large number of function evaluations. By
comparing various currently available aleorlthms.
Zoutendijk's method of feasible directions (See
Ref. (19) or for computational detain (21)) was se-
lected for Phase I. Since it is observed that most
likely the optimal designs are simultaneously on
several constraints, the optimization procedure is
carried out by staying close to the constraint
hypersurfaces to find the vertex where the minimum
of the objective function is achieved.

An important feature of this algorithm is the
direction finding process by which a redesign,
direction Is determined. Given a feasible design
vector X. , a new design Is obtained by the step:

where the direction of redesign S, is determined
so that for some a > 0, , ,,

k-H

,
will Be a feasible

design with an improved value of the objective.
The active constraint set at a design point X,
is determined by the criterion

-WAj VJ

where W.. is a positive scalar which specifies the

width of the active range of the J constraint.
At the point X, , the direction vector, S^, by which
the design Is to be modified, is determined by
solving a special linear programming problem,

Minimize B

Subject to: 3Tvg (X̂ ) + 8 B i 0 , V} c J

?TVf(Xk) + 8 i 0

Norm of S is bounded

where 6. are non-negative scalars that determine
how far the vector S must be pushed Into the

Parametric constraints are those which must be satisfied for a range of some parameter or parameters:
in this case, x and y are parameters for the stress and displacement constraints.



feasible region In order to avoid violation of the
same constraint due to Its curvature. For example,
If 6 • 0, S may be tangent to the hypersurface

g. (X) - 0. If 8 Is positive, 2 must lie strictly
Inside a cone with Its axis on the vector
-7g (X. ), with the apex on £ and with the open
angle determined by (but not equal to) 9.- In
this study, the value of 6 Is determined by
the following relation j

+1 (20)

This form is based on Vanderplaats' modlfica-

tion <2°>.

It is reported that the method of feasible
directions may have slow convergence due to a
behavior called zlg-zagging . For the
purpose of avoiding this difficulty and also
to improve the efficiency, the following
schemes are employed in addition to the basic
algorithm.

(1) If an active constraint g (Xfc) is linear

with respect to the design variables, 6
is set to zero.

(2) If a nonlinear constraint becomes active
successively, then 8. for that constraint
is increased by the following equation.

+ 1 + .(NSH, - l)e_, (21)

where NSH Is the number of successive

encounters of the name constraint, R,(X),

and c is a constant which is chosen to be

0.1 in this study.

(3) If a constraint g.(X) is encountered and

alternatively becomes inactive and active
more than three times, the constraint is
always kept active until convergence Is
obtained. Then the normal optimization
procedure is started again from that
tentative optimal point.

(4) The active width of the constraints is
taken to be large (for example, 5 - 10%
of normalized values of the constraints)
and if an optimum is achieved tentatively,
then the active width of the constraints
which are currently active Is cut to
smaller width and optimization Is continued
from the point achieved, previously. If
the current effective width of all con-
straints which are active at that tentative
optimal point are smaller than the speci-
fied values, this sequence Is stopped.

(5) Design variables are scaled so that the
components of the gradient vectors have
nearly the same order of magnitude,
this will generally cause the direction
finding procedure to be better conditioned.
The scaling factors are determined as a

result of a sensitivity analysis made at
various points in the feasible region.

(6) The maximum step size is restricted
because the starting point for the flutter
analysis may be too far from the true
flutter condition and cause numerical
difficulties/

(7) Since computation of the flutter con-
straints Is time consuming, none of flutter
constraints are incorporated at the begin-
ning. At the end of each one-dimensional
minimization, all flutter constraints
are checked and if new flutter constraints
are violated, that stage of one dimensional
minimization is repeated by taking the
violated flutter constraint into account.
This flutter constraint is then included
In all following computations.

3.2 Phase II

3.2.1 Analyses of Behavior Responses

Using the finite element modil described in
Section 2.1, the stresses, displacements, natural
vibration frequencies and flutter conditions are
to be computed. The governing equations for these
quantities are obtainable through standard proce-
dures and details are presented In Ref. (10).

The static displacement state is obtained by
solving the system of equations

K?s - ? (22)

where K is the master stiffness matrix of the
structure, and the vectors Y and P represent,
respectively, the displacement and the load vectors.
A clamped boundary condition is specified along
the root of the wing, thereby neglecting any
influence of the flexibility of the fuselage. In
addition, the number of degrees of freedom involved
in the static analysis is reduced to one half'of
the total degrees of freedom of the system by
assuming the wing to by symmetric about its
middle plane and by choosing the node points of
the elements on the top and the bottom surfaces
of the wing to be symmetric. Namely, the number
of displacement variables are reduced by one half
by making the following two assumptions:

(a) The vertical displacements of the upper
and lower surface points at a given plan-
form location are equal.

(b) The inplane displacements of these same
respective points are equal and opposite.

Since the load vector p depends on the root
angle of attack ag and the displacement state Y ,
an Iteration process is necessary to determine
the root angle of attack which .provides the speci-
fied gross lift. This is indicated in the flow
diagram of Fig. 3. The stress state Induced In
the finite elements can be determined from the
known'nodal displacements YS by using the stress-
strain and the strain-displacement relations of
linear elasticity. The stress Information is also
used for the purpose of checking a simple form of
local buckling of the stiffened cover plates



and/or face wrinkling of the sandwich panels.
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Figure 3

Frequencies of natural vibration in a vacuum
are computed by solving an eigenvalue problem

[K - *2M]Yv = 0 (23)

The determination of eigenvalues and eigenvectors
is notoriously time consuming and it was therefore
desirable to further reduce the degrees of freedom
of the system so as to make the solution process
more economical. The reduction technique used
in the present study is similar to the one
outlined in Ref. (22), namely, the elimination
of coordinates at which the expected inertial
forces can be assumed to be small. Accordingly,
the degrees of freedom associated with the
transverse displacements are retained by eliminat-
ing those corresponding to inplane displacements;
this is in addition to the Itoking among coordinates
used in the static analysis. The order of the
elgenproblem is thus reduced to one-third that of
the corresponding static problem- The reduction
process is based upon the partition of Eq. 23,

as follows

pxp pxq

K21 K22
qxp qxq

MI 2

(24)

L.

It is assumed that the modes of natural vibration
can be achieved sufficiently accurately by taking
the vector Y,, to be related to Y., as In a purely

V o 1

static problem. Consequently, Eq. (24) can be
written in a reduced form

IK - u,2M 1* - 0\ r r' Vi

where

(26)

P'P

pxp

- KI 2*27

~1M22K22 2̂!] (27)

The reduced system, Eq. (25) Is solved by u*lng
Choleski decomposition on M and Householder's
method successively. To check the accuracy of
the frequenciea obtained from the reduced system,
natural vibration frequencies of 60 d.o.f.
(original) and 20 d.o.f. (reduced) system represent-
ing a cantllevered box beam were computed and
compared. Eigenvalues associated with the
transverse vibration agree well^with differences
less than 1Z for all 18 modes

The governing equation for flutter at neutral
stability Is expressed in a form

[Kr-
(28)

The aerodynamic matrix Qr 1| assembled from
element aerodynamic matrices Q , expressed as
follows

(29)

where

p : Free stream mass density

V : Free stream air velocity

- f(
dxdy

1 - J| If

and a (x, y) is a column vector |£ displacement
Interpolation functions of the 1 triangular
membrane element for cover plates,

, y)

(30)

where Aj23 Is the area of the triangular element i.

After assembly, the aerodynamic matrix Qr is
arranged In the following form. .

Or ' (31)
Ip (Y

(25) Suppose the flutter mode can be expressed by

u? (32)

where the columns of U represent the s-lowest _^
natural vibration modes and the complex vector £
Is a vector of model participation coefficients.
By substituting Eq. (32) Into Eq. (28) and pre-
multlplylng UT, Eq. (32) Is reduced to a smaller



(33)

Imposed for each fuel condition.

Flutter Spaed: The flutter Mach number must be
higher than the flight Mach number for each
flight condition.

Side Constraints

The cover plate thicknesses have upper and
lower bounds, the spar and the rib thickness have
lower bounds, and the bar elements also have
lower bounds. The tuning masses used for flutter
suppression can have upper and lower bounds.

The requirement for this equation to have a non-
trivial solution is that both the real and
imaginary parts of the coefficient determinant be
zero. The two unknown parameters In this deter-
minant are u and V^ and the combination of (V̂ , u>)
having the lowest V^ and that makes the determinant
vanish is the flutter condition. This problem
is solved by a double iteration process given
in detail in Ref. (10).

The gradient of the behavior responses with
respect to the design variables are obtained
in various ways. The derivatives of the static
responses are computed by finite difference and
those for natural frequencies and Mach number
are computed using analytical relations obtained
by assuming that the mode shapes are independent
of small changes in the design variables.

3.2.2 Formulation of the Design Problem for

Phase II

The objective function used in Phase II is
the structural weight of the wing. Multiple
flight conditions and an arbitrary fuel condition and
gross lift requirement can be specified. Two
parametric constraints, viz. the stress and the
displacement constraints, are simplified by
choosing appropriate points or elements where
the most critical responses are expected.

Behavior Constraints

Stress: For a preassigned set of cover plate
elements near the root, normal stress components
are computed, and they must not exceed
specified values for these elements.

Cover Plate Local Buckling and Face Wrinkling: For
a preassigned set of cover plate elements
near the root, the compresslve.stress components
in the spanwise direction are computed. "These
stress levels must not exceed the estimated
buckling stress of the stiffened panel nor
the estimated wrinkling stress of the sandwich
plate. See Ref. (10).

Gross Lift: The gross lift provided by the wing
must be equal to the given value for each flight
condition. This equality constraint is
Incorporated in the computation of the static
responses and is not treated as a constraint
In the optimization problem.

Natural Frequencies: Preassigned number of natural
frequencies may have the upper and lower bounds

3.2.3 Optimization Algorithm for Phase II

In Phase II, the sequential unconstrained
minimization technique (SUMT) is used by transform-
Ing the constrained problem into an unconstrained
problem through an Interior penalty function
formulation. Primary reasons for this choice
are

.(1) The algorithm for the unconstrained minimi-
zation of arbitrary, functions are well
studied and generally are reliable.

(2) The penalty function methods allow the
use of approximate analyses, at least,
during the early stage of optimization.

(3) The variable metric unconstrained minimiza-
tion technique used for the direction
finding process is inherently stable and
little affected by minor errors introduced
through the analysis approximation. ' .

The general problem, Eq. (9), is transformed
Into the problem, '\

Minimize:

*<*. rk)-f(*>-rk

•j d-
od-

NC

^

(34)

Starting from a feasible point, XQ, the function
(X, r, ) la minimized for a decreasing sequence of
positive real numbers, r, .

For a minimization procedure, the Dayidon-
Fletcher-Powell variable metric method is
used. This is considered to be the most powerful
general algorithm known to date for finding an
unconstrained local minimum of a function of many
variables. The i direction vector S. is found as

(35)

where the matrix H is updated by

H1 +

(36)

HO - I

10



The one dimensional search problem is to find
a • a* which yield the first local minimum of

oX^ + allt r) = «>(o) (37)

An efficient one-Simensional search method develop-
ed by Lasdon, Fox fend Ratner is used in this
study. This process consists of three stages:
a linear, a quadratic, and a cubic approximation.
The function values and first derivatives of f(X)
and g,(X) are used systematically in the three
stages to locate the minimum with a restricted
number of function evaluations.

Several important features utilized in this
optimization algorithm are the following:

(1) The initial value of rfc (i.e. rj.) is
chosen so that It satisfies

1.25f(X0) 2.0f(?0)

and the values of r. . are found by using
the relation

(2) The criterion for termination of minimiza-
tion for each r. is provided by the follow-
ing relation

< e

(3) The criterion for termination of the entire
optimization is provided by the Kuhn-
Tucker conditions: i.e. that the computed
Lagrange multipliers for the active
constraints are all negative.

(4) A certain amount of interaction between
the operator of the program and the computer
Itself were found to be useful in saving

computer time. Up to 40% of the computer
time can be saved by adjusting the conver-
gence criteria.

4. ILLUSTRATIVE EXAMPLES

Because of the complexity of the problem, it
requires a large amount of data to present complete
information to make the results reproducible.
The data presented in this section are therefore
only summaries which should be sufficient to
visualize the problems and the significance of
the optimization results. For more complete data,
the principal references (9) and (10) should be
consulted.

Cases 1, 2 and 3 are examples for Phase I and
Cases 4, 5 and 6 are examples for Phase II.
Cases 3 and 6 are sequential as' described in
Section 1. The Important design conditions for all
cases are given in Table 1.

Cases 1 and 2

These tvr cases use only different objective
functions and demonstrate the effects of this
choice on the optimal designs. In Case 1, the
aerodynamic drag (in pounds) Is considered to be
10 times more Important than the weight of the wing
(in pounds). Drag is computed in flight condition 1
with a vertical acceleration of 1 g.' As shown in
Table 2, the wing depth is decreased by 44.6% at
the root, while the skin panel thlnkness is increas-
ed by 98.1%, thus the resultant weight is increased
by 26.8%. But the objective function decrease
of 27.5% Is achieved due to large reduction in
both friction and pressure drag (see Fig. 5). In
Case 2, the aerodynamic drag and the weight are
considered to be equally Important. Consequently,
as shown in Table 2, the cover panel thickness is
decreased by 48.6%. The increase in pressure drag
is Induced by a twisting deflection (leading edge
up) due to the

rllcht Condition*

Utltwta

PUjht lUefa IkotAcr

EfMd of Smsd

Air Drtxlty

fwml

teclMat

tutor !•!

Youo«'« ModuliM E

E

Sb««r Haduln* . C

c
polaaoo'. Ratio v

•a

Deaaltr

Haterlal

Objective Ptaactlao

Safety Factor.

Vertical Acceleratle.

Hotter taaij

Caaa. 1 t 2

1 2

40,000 ft. 60,000

3.0 2.2

ll.UO !»/. U.6W.O

2.I3«10~* 1,09-10"* .

0.645.10'* (eaaaltr) la-e'/la

77.2 Ib-.'/to

Cover Cor*

.06-107 pal 7.06J101

.OtalO7 pal l.OtelO4

.Oxio' pal 0

.Olio' pal 2.66I101

.Olio' p.l 3.32S101

0.3 0

0.3 0

2.48H10'* Ib-e'/lo* 0.4»7»40"*

iln.100. Alloy AUacm Alloy
CrU

Caae 1 Caaa 1

«r| 4 0.1 vt. Art « «t.-

1.3

1.4

Ca»a 3

1 3

13,000 33,000

1.3 3.3

12,193.0 11,670.0

S.ltolO"* 1.36»10"*

0.643UO"4 Uaulty)

121. 0 Ib-a'/u

Cover Cera

1.6*al07 9.63llo'

I.eexlO1 9.63«lfl3

0.63K107 0

0.63xl07 3.7U103

0.63H07 3. 71xlo'

0.3 0

0.3 0

4.143»10'P* 2.443>10*7

tttaBluB ntaHl^ Crl4

•r, « 0.1 vt.

1.0

1.23

C-.4

1 1

23,000 33,000

2.3 3.3

13,193.0 11.671.0

3.14x10 3.3<»10

243,000 a. •220,300 D>.

U3JB lo-a'/la

««,«.!.) "
> v L.MH07

v • 0.3

4.143xlO"*

ncaml«

3s&-

1.0

1.0

COM 3

1 2

30,000 40,000

2.4 3.0

11,9U.< 11,617. 1

4.30»i0~* i.eaiio*8

3 0 3.33

139,000 It. 143,100 U.

62.1 tt-e'/ln

(laotneic)
1 - 1.64ilo'

v - 0.3

4.143x10*

ricaolm

taDaMck

^t

1.0

1.0

Caw 6

1 3
23,000 33.000

2.3 3.3

12,193.0 11,471.0

S.le.Uf' l.J*»10"*

3.3 3.3

0 200,000 1>

111.0 IW.'/ln

(laetraflc)

E. l.««xlO

v • 0.3

4.14H10

TltaMOi

-««

1.0

11



40

30
20
10

in
UJ 0

i *
.3
.2
. I
0

WING
DEPTH

SKIN
THICKNESS

z

40
30
20
10
0

4

.3

.2

. I

0

WING
DEPTH

decrease of the stiffness. Simple presentations ol
these result* are given In Fig. 4. ^

?or these examples, the plan view shapes are
restricted primarily by the minimum semi-span
constraint. If stricter angle of attack or wing area
constraints are Imposed, the wing shape becomes
stretched in the chordwise direction and the root
chord constraint becomes a binding constraint (9).

Case 3

This case shows an example for a larger titanium
wing. By relaxing the trailing edge sweep angle
constraint, an almost symmetric plan view config-
uration is achieved. In the course of the optimiza-
tion process, a natural vibration mode shift is
observed. At the initial design, the first and
the second natural vibration modes are associated
with bending and the third mode is associated
with twisting and the flutter frequency is between
the second the the third natural frequencies.
After four iterations, however, the twisting mode
is shifted to the second mode and the true flutter
frequency is found between the first and the second
natural vibration frequencies.

When this type of mode shift happens, it is
often the case that the initial point of flutter
condition search becomes inadequate and the design
process must be stopped and restarted manually.
If this occurs near the optimum, accurate and
stable flutter condition search may become difficult
Simple presentation of this optimization result
is given In Fig. 4.
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Figure 5
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Cases 4 (a) and 4Q>)
0

The vlng shown In fig. 6 is considered. It has
• 45° leading edge sweep angle and a planform area
of 4,460 sq. ft. The material is Titanium. The
thicknesses of the triangular elements marked ."1"
in the figure are taken as design variable xi; the
thicknesses of the other skin elements are taken as
x2- The variables xj and xt, correspond to the rib
and spar web thicknesses respectively and the flange
areas of the ribs and spars are taken as xc, and xg
respectively. The four tuning masses are xy, xg,
x9, and x10.

The difference between Cases 4(a) and 4(b) is
merely the convergence criterion in the optimization
procedure. In Case 4(a), a tight criterion was
used to terminate the minimization for each r value
while In Case 4(b), more relaxed criteria were used.
Figure 7 shows the penalty function of 4(a) vs. the
number of minimization steps and the objective
functions of 4(a) and 4(b). The objective function
has been scaled before incorporation into the penal-
ty function. The differences in the optimal
designs are Interesting but the near equality of
the objective functions merely indicates that
the optimal region may be relatively flat in this
problem. The flutter speed at low altitude is the
active constraint and the tip displacement at high
altitude is approaching an active status. These re-
sults are presented in Table 3.

^ TYPICAL COVER SKIN PANELS

E3 TYPICAL SPAR ELEMENTS

E3 TYPICAL RIB ELEMENTS

• ENGINE MASSES
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X
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15 16 21 24 27

CUMULATIVE NUMBER OF
ONE-DIMENSIONAL MINIMIZATIONS

100

Figure 7 (c!
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Case 5

This case is a delta wing with the skin design
variables XL x2 and x3; rib and spar web variables
xi, and xs; rib and spar flange variables x6~and x7;
and tuning masses *g. x^ and XJQ. Th« active con-
straints at the optimum are the flutter Mach number,
the tip displacements, the face wrinkling stress,
and a natural frequency limit. In addition x;,
xj, xg, xg, and XIQ are at their lower limits.

Case 6

The wing configuration and depth distribution
from Case 3 (a Phase I example) were used to gen-
erate a finite element model. The design condi-
tions were generally the same although there are
some necessary changes In detail. Basically what
we have is an attempt to design a more detailed
version of the wing "predicted" as the optimal by
Phase I. The results at first seem disappointing
in that no improvement is possible over the initial
design. In fact, a number of optimization runs
produced several designs which differed a little
in detail, but which were all within a few percent
of the initial design in weight. The reason for
this is that the initial design (given in Table 3)
is derived from the optimal results of Case 3.
To the extent that the analyses are comparable, the
same constraints are active in both cases.

It is encouraging, in fact, that the Phase II
program is essentially satisfied with the output of
Phase I. On the other hand In other cases where
a distribution of structural material which is
substantially different from the uniform one of
the Phase I model is better, the Phase II program
will obtain it.

Figure 6
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TABU 2 RESULTS Or OPTIMIZATION

Design Variables

Root Chord (In)

Seml-spsn (In)

Leading Edge Sweep (deg)

T r a i l i n g Edge Sweep (deg)

W l n f c Depth d j ( I n )

. d-. (In)

d, ( I n )

Cover Panel Thickness t; ( In )

t? ( In)

t j ( In)

Objective Function (Ib)

Weight (Ib)

Pressure Drag (Ib)

Friction Drag (Ib)

Wing Area (In3)

Flutter Mach Mo. no fuel P. C. l"'

Flutter Mach No. no fuel F. C. 2

Flutter Mach No. full fuel F. C. 1

Flutter Mach No. ful l fuel F. C. 2

Ang. Attack, full fuel F .C.2 (deg)

Stress full fuel F.C.I (ksl)

Stress ful l fuel F.C.2 (ksi)

Cue 1

Initial Optimal

1250.0 905.73

650.0 600.03(a)

45.0 30.93

0.0 -1.10

80.0 28.60

50.0 34.27

0.0 9.15

0.4 0.6926

0.4 1.2328

0.0 0.3816

23,408.6 17,005.5

29.431.7 37,280.7

8,545.3 6,400.6

11,920.2 6,878.9

4,180.0 2,275.0

7.30 6.77

3.28 3.08(b)

9.00 7.42

4.15 3.34

6.5 8.85

4.47 19.97(d)

4.30 19.49(d)

Cua 2

Initial Optimal '

854.26

600.03<a)

« 29.6
* (ft)

g 58-05

„ 53.06

| 27.53

10" 5 (h)

0.5243

0.4305

49,987.1 34,722.1

15,100.3

3-4 13,906.4

J S 5,715.9
J

Sane as Case 1 2;140.0

6.59

3~ 3.13(b)

is 8-3°
4.14

S-, 9.98"'

jj !!vd>

. !>•£•", 3,..; ... - <••:,

Inltlfii'-' ' -^~-^s Optlial 1

1150.0 1121.1

B50.0 600. 0U).

45.0 21.5 "

0.0 -20.0<k)i

0.0 6.62

100.0 . 55.13

100.0 41.16

2.0 1.518

2.0 1.759

2.0 ' 1.639

94,34'i.B 33,443.6

140,647.4 106,278.9

49,890.1 18,539.0

30,3(8.1 24,278.5

4,280.0 3,310.0

6.09 3.35

8.66 4.94

S. 00 3. 17<c)

10.9 4.72

5.60 5.35

19.07 97. 15U1

19.28_> "-cn ThiPA:?0'-'

(a) Lower Bound - 600.0, (b) Lower Bound - 3.08, (c) Lower Bound - 3.125, (d) Upper Bound • 20, (e) ' Upper ' Bound1 - 100, '

(f) Upper Bound - 10', (g) Lower Bound • 10', (h) Lover Bound • 0, (k) Upper Bound • 20*, (».) Flight Condition

-li

,if ^' ;*.

A Nou
of

Alr-
:'-oc. 5th Ccnfer-

;'..'. Purdue Univ.

TABI.K 3 RF.SULTS OF OPTIMIZATION

Design Variables

Cover plates t|

t;.

t3

Rib thickness T,

Spar thickness T:
Chordwlse bars A]

Spanwlse bars A2

Tuning masses m]

mj

mi.

Objective function

Representstive

Constraints

Tip defl. F.C.2

Root strtas F.C.2

Skin buckling F.C.2

Face Wrlnklng atr. F.C.2

Flutter Nach No. F.C.I

F.C.2

Caae 4* (a)* (b)*

Initial

.200 In.

.200 In.

-
.100 In.

.100 in.

.250 ln.?

.250 in.2

5000.0 Ib

5000.0 Ib

5000.0 Ib

5000.0 Ib

108,127 Ib

74.76 In

54.47 kai

52.57 kal

3.04

4.76

Optimal

.0845

. 2086

.

.0859

.1280

.1586

.1680

1051.0

1126.0

897,.0<b)

964.0

74,380

84.23(k)

60.66

67.06

2.SIW

3.93

optimal

.0829

.2107

-
.0685

.1548

.0747

.0507(a)

757.0

924.0

674.0(b)

683.0

73,258

84.31
<k)

60.88

67.48

3.94

Case 5*

Initial

.050

.085

.095

.195

.195

.200

.200

1950.0

1950.0

1950.0

-

30,486

58.96

75.02

72.52

72.52

2.85

4.62

Optimal

.0414<h>

.0901

.0839

.1022(3)

. 1004<J)

.1025.

.1132

1008.0(c)

1014.0<C>

-

22, 769

61.8*(a)

76.25

74.61

74.61<"

4.21 -- '•••

Cua 6

0.25

0.35

0.35

0.25

0.25

0.25

0.25

2500.0

2500.0

-

106,500

69.0

57.0

\'4i.63irec:-.:.c
-19&0.
3.42

• .'il&:. of El

Active and near Actlva Conatralnta ^ ..

(a) Lover bound - .05, (b) Lovar bound • 500, (c) Lover bound • 1000, (d) Lover bound • 2.5, (•) Upper bound • 63,

(f) Upper bound - 74.8, (§) Lovar fcound - 2.6, (h) Lover bound • .04, (J) Lovar bound • .10, (k) Upp«r bound - 100"

Tempera-
te

as'ci-

* the ««ae •• Cue* 2(«) «nd (4) of Ref. 10

tht nee «j CAM 1 In Ref. 10



5. Concluding Remarks
«

The feasibility of performing optimal wing
structure designs at a preliminary design stage was
studied, and both the equivalent plate formulation
and the finite/element formulation were found
to be useful.' For most of the examples run,
dynamic constraints assumed Important roles In
the design procedure, thus Indicating the wisdom
of considering these constraints at the preliminary
design stage. Supersonic flutter In low altitude
flight becomes an especially critical condition.

A simplified wing configuration design was
shown to be feasible and It was found that the
choice of the objective function had strong
effects on the optimal configuration. Additional
study will be necessary to determine a more
realistic objective function for combining
weight and drag, but the trends are clearly shown
in the results.

Detailed material distribution design using
the more precise structural analysis of the finite
element method was presented and was also shown
to be feasible.

In both phases of design, computation time
required for one complete design ranged from
0.6 to 1.5 hours on a UNIVAC 1108 computer. This
was achieved by taking advantage of special
structures of the problems and by utilizing human
judgement at various stages during run time.
Even considered as a subsystem to be used in an
integrated design system, these requirements on
computational time of approximately one hour may
be acceptable.

While it may be desirable to completely automate
the entire procedure of the design, especially
inside each subsystem, It is recognized that a
certain level of man-machine communication can
save a great deal of programming effort and
computation time.
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